P. P. SAVANI UNIVERSITY

Fifth Semester of B.Sc. Examination December-2021

SSMB3130-Industrial Microbiology-I

14.12.2021, Tuesday Time: 12:30

Time: 12:30 p.m. to 3:00 p.m.

Maximum Marks: 60

[10]

[05]

Instructions:

- 1. The question paper comprises of two sections.
- 2. Section I and II must be attempted in separate answer sheets.
- 3. Make suitable assumptions and draw neat figures wherever required.
- 4. Use of scientific calculator is allowed.

Section-I (Total Marks - 30)

- Q.1 Short Questions
- 1.1 Objectives
- 1.1a Typical aeration rates for aerobic fermentation are
 - A 0.5 1.0 vvm
 - B 1.0 1.5 vvm
 - **C** 1.5 2.0 vvm
 - **D** 0- 0.5 vvm
- 1.1b Single cells are smaller than gas bubbles?
 - A True
 - B False
 - C Can't say
 - D depends of cell
- 1.1c Which type of microbes grow well in the condition of enriched oxygen?
 - A Obligates aerobes
 - B Obligates anaerobes
 - C Facultative anaerobes
 - **D** Microaerophilic
- 1.1d The least yield of ATP is observed in
 - A aerobic respiration
 - B anaerobic respiration
 - C fermentation
 - **D** dialysis
- 1.1e Co2, Wine & beer are produce by
 - A aerobic respiration
 - B anaerobic respiration
 - C microaerophilic organisms
 - D All
- 1.1f Which of the following is not a nitrogen source
 - A Waste liquor
 - B Corn Steep
 - C Yeast Extract
 - **D** Peptone
- 1.1g Which of the following is not the constituent of pharmamedia?

	A	Calcium	
1	В	Valine	1
	C	Riboflavine	1
	D	Fluorineid	
.1h	Wh	ich of the following is a defined media?	
	A	Synthetic media	
	В	Crude media	
	C	Simple media	
		Complex media	
L.1i	Wh	at is the basic principle of Industrial Microbiology?	
	A	To provide optimum growth condition	
	В	To provide aseptic condition	
	C	To produce a pure product	
	D	To create pure form of media	
1.1j	Cru	ide media is an undefined media	
	A	True	
	В	False	
	C	Depends of environment	
	D	Depends on pH	
		(1200 /gl + O : - t' /Fill in the Planks)	[05]
1.2		swer the Following: (MCQ/Short Question/Fill in the Blanks)	[o.
1.2a		steurization work fromtotemperature.	
1.2b		e word fermentation derived from Greek word	
1.2c		nat is sublimation?	
1.2d		nat is orifice?	
1.2e	-	is going to prevent formation of vortex.	
Q.2	Sh	ort Notes (Atlempt any two)	[06]
Q.2 A	Co	mpare & Contrast Batch & Continuous Fermentation	
В		nlist major historical development in fermentation.	
C	En	list a type of carbon source and their mode of action in media.	i
C	Li	inst a type of earbon source and then mode of design in model	
Q.3	Ex	plain in detail (Attempt any two)	[14]
A		offine Fermentation. Explain various types of fermentation.	
В		hat is Kinetics? Write a note on Microbial growth kinetics.	
C	De	efine Upstream Process. Enlist different stages and importance of each.	
-			

Section-II (Total Marks - 30)

		Section-II (Total Marks - 30)					
Q.1	Sho	ort Questions		[10]			
1.1		Objectives [05					
1.1a	Which of the following fermenter is used vinegar production						
	A	Airlift					
	В	Cyclone column					
	C	Packed tower					
	D	None					
1.1b	Sca	ale up of fermentation process requires that					
	A	Small and large vessel dimensions must be similar					
	В	Small and large vessel dimensions must be different	t				
	C	Vessel dimensions do not matter					
	D	Different vessels are not used	/				
1.1c	Ae	ration-agitation system includes					
	A	Impellers					
	В	Baffels					
	C	Spargers					
	D	All of the above					
1.1d		ole of sparger is to					
	A	Introduce air					
	В	Remove air					
	C	Mixair					
	D	Compress air					
1.1e		esign of fermenter must include					
	A	Temperature and pH control					
	В	Inoculation and sampling port					
	C	Aeration agitation system					
4.46	D						
1.1f		ollowing are required for growth of bacteria except					
	A	Carbon					
	B	Nitrogen Antifoaming agent					
	D						
1.1g		icronutrients are those that are required in					
1.18	A						
	В						
	C						
	D						
1.11		/hich one of the following is cheap source of nitrogen:	?				
1.11	A						
	В						
	C						
	D						
1.1i		ficroorganisms take energy form					

	A	Reduced sanstrate		
/	В	Oxidized substrate		
	C	Acidic substrate		
	D	Alkaline substrate		
1.1j	Fol	lowing is an example of antifoam except		
	A	Alcohols		
	В	Fatty acids		
	C	Silicones		
	D	Proteins		
1.2	An	swer the Following: (MCQ/Short Question/Fill in the Blanks)		[05]
1.2a	W	nat are precursors?		
1.2b	Ag	itators are also known as	1	
1.2c	Ва	ffels cover 1/10 th of the vessel volume. (True/False)		
1.2d	Fo	aming never creates problem during microbial growth. (True/False)		
1.2e				
Q.2	Sh	ort Notes (Attempt any two)		[06]
A	Sig	mificance of aeration-agitation system.		
В	Cri	teria for medium formulation.		
C	Co	mponents of a typical growth medium.		
*				
Q.3	Ex	plain in detail (Attempt any two)		[14]
A	Air	lift fermenter.		
В	Co	mponents of aeration agitation system.		
C.	W	nat are antifoaming agents? Enlist the ideal properties of antifoams.		